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1     Comparison of BCM and PC A learning in a realis- 
tic Binocular Environment 

Different models, that attempt to explain how cortical receptive fields evolve, have been 
proposed over the years Typically these models are distinguished by their learning rule, the 
representation of the visual environment, and the architecture of the network. 

Most of these models assume a simplified representation of the visual environment or a 
second order correlation function of the visual environment Realistic representations of the 
visual environment have only very recently been considered 

Recently we have realistically modeled the two-eye visual environment. We study how 
orientation selectivity and ocular dominance form simultaneously. In particular, we study 
the effect of image misalignment between the two eyes on receptive field formation 

We have compared how image misalignment affects receptive fields under two two different 
learning rules PCA in the form proposed by Oja in 1982 and and BCM We have chosen to 
examine these two because they are well defined and and have stable fixed points. 

We have shown that binocular misalignment has very different effects on these two learn- 
ing rules. For the BCM learning rule misalignment is sufficient to produce varying degrees 
of ocular dominance, whereas for the PCA learning rule binocular neurons will emerge inde- 
pendent of the misalignment. 

1.1     A Binocular Visual Environment Composed of Natural Im- 
ages 

We have used a set of 24 natural scenes. These pictures were taken at Lincoln Woods 
State Park and scanned into a 256 X 256 pixel image. We have avoided man-made objects, 
because they have many sharp edges, and straight lines, which make it easier to achieve 
oriented receptive fields. 



Figure 1:  Three of the natural images used (top) processed by a Difference of Gaussians 
filter and presented at the bottom. 

We have chosen to model the effect of the retinal preprocessing by convolving the images 
with a difference of Gaussians (DOG) filter, with a center radius of one pixel (a\ = 1.0) and 
a surround radius of three (<72 = 3)1. The effect of this preprocessing is shown in figure 1. 

As illustrated in Figure 2, the input vectors from both eyes are chosen as small, partially 
overlapping, circular regions of the preprocessed natural images; these converge on the same 
cortical cell. 

Binocular Model 

Visual pathway 

Figure 2: Schematic diagram of the two eye model, including the visual input preprocessing. 

The input from the right and left eye respectively are denoted by d' and dr, and the 
output of the cortical neuron then becomes c = <r(d' • m' + dr • mr), where a is the non 
linear activation function of each neuron. We have used a non-symmetric activation function 
to account for the fact that neuronal activity as measured from spontaneous activity has a 
longer way to go up than to go down to zero activity. 

1This ratio between the center and surround in biologically plausible, and enables the PCA rule to produce 
oriented receptive fields. 



In order to examine the effect of varying the overlap between the receptive fields we define 
an overlap parameter 0 = s/2a, where a is the receptive field radius in pixels, and s is the 
linear overlap in pixels, as shown in Figure 2. When the left and right receptive fields are 
completely overlapping 0 = 1, when they are completely separate 0 < 0. 

In order to assess the degree of cell binocularity, we introduced an ocular dominance 
measure B based on left and right eye response: B = (L — R)/(L + R). B is calculated 
by first finding the orientation at which the cell has the greatest binocular response to a 
sinusoidal grading, and then measuring L and R, the left and right eye responses at that 
orientation. 

1.2 Cortical plasticity learning rules 

We have employed these realistic visual inputs to test two of the leading visual cortical 
plasticity rules that have been used to model various normal rearing and visual deprivation 
experiments: Principal components analysis (PCA) and the Bienenstock Cooper and Munro 
(BCM) model. 

Principal components analysis (PCA) is one of the most widely used feature extraction 
methods for pattern recognition tasks. PCA features are those orthogonal directions which 
maximize the variance of the projected distribution of the data. 

A simple interpretation of the Hebbian learning rule, is that with appropriate stabilizing 
constraints it leads to the extraction or approximation of principal components. This has 
often been modeled The learning rule that we use has been proposed by Oja (1982), and 
has the form: Amt- = r][diC — c2mi\ where d{ is the presynaptic activity at synapse i, c is 
the postsynaptic activity, and ra; is the strength of the synaptic efficacy of junction i. rj, 
is a small learning rate. This learning rule has been shown to converge to the principal 
component of the data. 

The BCM theory has been introduced to account for the striking dependence of the sharp- 
ness of orientation selectivity on the visual environment. We use a variation due to Intrator 
and Cooper (1992) for a nonlinear neuron with a non-symmetric sigmoidal transfer function. 
Using the above notation, the synaptic modification is governed by rhj = r]<j>(c, 0M)dj, where 
the neuronal activity is given by c = a(m ■ d), <f>(c,6M) = c(c - 6M), and 9M is a nonlinear 
function of some time averaged measure of cell activity, which in its simplest form is given 
by 6M = E[c2], where E denotes the expectation over the visual environment. The transfer 
function a is non symmetric around 0, to account for the fact that cortical neurons show a 
low spontaneous activity. The neuron can thus fire at a much higher rate relative to the the 
spontaneous rate, but can go only slightly below the spontaneous rate. 

1.3 Results 

In all the results reported here we used a fixed circular receptive field with a diameter of 20 
pixels. We tested the robustness of the results to receptive fields of sizes 10 to 30 pixels and 
got no qualitative difference in the results. 



BCM neurons acquire selectivity to various orientations in the partial and the non- 
overlapping case as well. When receptive fields are misaligned, various ocular dominance 
preferences may occur even for the same overlap. This result stands in sharp contrast to the 
one obtained by PCA neurons; only binocular neurons with a preferred horizontal direction 
emerge under for the PCA rule. 

Overlap Receptive Field 

Left        Right 

O 

Ocular Dominance 

Histogram 
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GO 
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Figure 3: BCM neurons with different overlap values; O = 1,0.6,0.2,-0.2 from top to 
bottom. The ocular dominance histograms summarize the ocular dominance of 100 cells at 
each overlap value. The dependence of ocular dominance on visual overlap is evident. 

The BCM receptive field formation results are summarized in Figure 3. Receptive field 
misalignment does not affect orientation selectivity of the dominant eye, but does produce 
varying degrees of ocular dominance; this depends on the degree of overlap between the 
receptive fields. The main result is that ocular dominance depends strongly (even for single 
cell simulations) on the degree of overlap between visual input to the two eyes. 

The PCA results are presented in Figure 4. As mentioned above, it can be seen that 
the degree of overlap between receptive fields does not alter the optimal orientation, so that 
whenever a cell is selective its orientation is in the horizontal direction. The degree of overlap 
does affect the shape of the receptive fields, and the degree of orientation selectivity that 
emerges under PCA: orientation selectivity decreases as the amount of overlap decreases. 
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Figure 4: Receptive fields for partially overlapping inputs using the PC A rule, Receptive field 
for an overlap value of 0 = .6 (top left). Receptive field for a small overlap, O = .2 (top 
right). Receptive field for no overlap , 0 = —.2 (bottom left). Receptive field for shift in 
the vertical direction between the visual inputs when O = .5 (bottom right). In all cases the 
cell is binocular and horizontal. The symmetry property evident in these receptive fields is 
analyzed in Shouval et. al.  (1995). 

However, when there is no overlap at all, one again gets greater selectivity. For PCA, there 
is also a symmetry between the receptive fields of both eyes. This arises from invariance to 
a parity transformation that imposes binocularity. 

We also studied the possibility that under the PCA rule, different orientation selective 
cells would emerge if the misalignment between the two eyes was in the vertical direction, 
but this produced horizontal binocular cells as well. 

The PCA results described above were quite robust to the introduction of nonlinearity 
in cell's activity; there was no qualitative difference in the results when a non symmetric 
sigmoidal transfer function was used. 

Thus we conclude that in a realistic visual environment the BCM neuron develops orienta- 
tion selective cells to all orientations, as well as varying ocular dominance. This is consistent 
with observation. In contrast the PCA neuron is unable to develop cells selective to all 
orientations and the cells are always binocular, which is not in agreement with observation. 
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Role of the visual environment in the formation of 
receptive fields according to the BCM theory 

C. Charles Law, Mark F. Bear and Leon N Cooper 

Departments of Physics and Neuroscience, Institute for Brain and Neural Systems, firown Uititvrstry. 

Prouidcncc. Rl 02912. USA 

Introduction 

Modification of synaptic effectiveness between 
neurons in cortex is widely believed to be the 
physiological basis of learning and memory, fur- 
ther, there is now evidence that similar synaptic 
plasticity occurs in many areas of mammalian 
cortex (Kirkwood el al., 1992). In 1982, Bienen- 
stock, Ccoper and Munro (BCM) proposed a 
concrete synaptic modification hypothesis in which 
two regions of modification (Hebbian and anti- 
Hebbian) were stabilized by the addition of a 
sliding modification threshold. 

There are two ways to test a theory like that of 
Bienenstock, Cooper and Munro. One is to com- 
pare its consequences with experiment; the other 
is to directly verify its underlying assumptions. 
Recently two such avenues of research have sup- 
ported this model of plasticity. Physiological ex- 
periments have verified some of its basic assump- 
tions, while analysis and simulations have shown 
that the theory can explain existing experimental 
observations of selectivity and ocular dominance 
plasticity in kitten visual cortex in a wide variety 
of visual environments and make testable predic- 
tions. 

The BCM theory was originally created to ex- 
plain the development of orientation selectivity 
and binocular response of neurons in various 
visual environments in kitten striate cortex, one 

of the most thoroughly studied areas in neuro- 
science. The research philosophy of our labora- 
tory is to keep our model of the cortex as simple 
as possible, and add details after behavior and 
consequences'have been thoroughly understood. 
In this paper we will present a more realistic 
representation of the previous simplified visual 
environment. Effects on our previous findings, 
and the additional ways the extension allows fur- 
ther comparisons with visual cortex will be ex- 
amined. 

Research   in   this  area  began  with   Nass xand 
Cooper (1975) who explored a model in which the 
modification   of   visual   cortical   synapses   was 
Hebbian; i.e. a change to a synapse was based on 
the  multiplication of the  pre-  and  postsynaptic 
activities, and stabilization of the synaptic weights 
was produced by stopping modification when the 
cortical response reached a specified maximum 
— thus tying local modifications to the total corti- 
cal response. The idea that the sign of the modi- 
fication should be based on whether the postsy- 
naptic response is above or below a threshold was 
incorporated by Cooper et al. (1979) (see Fig. 1) 
to explain variations in selectivity with different 
visual   environments.  To  stabilize   the   synapses 
without having to impose external constraints on 
them, the threshold was allowed, by Bienenstock 
et al. (1982), to slide as a non-linear function of 
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Unbiased Estimate of Generalization Error and Model 
Selection in Neural Network 

YONG Liu 

Brov-n University 

(Received 2 November 1993; revised and accepted 28 September 1994) 

Abstract—Model selection is based upon the generalization errors of the models in consideration. To estimate the 
generalization error of a model from the training data, the method of cross-validation and the asymptotic form of 
the jackknife estimator are used. The average of the predictive errors is used to estimate the generalization error 
This estimate is also used as the model selection criterion. The asymptotic form of this estimate is obtained. Asymp- 
totic model selection criterion is also provided for the case when the error function is the penalized negative log- 
likelihood. In the regression case, it also proves the asymptotic equivalence of Moody's model selection criterion 
and the cross-validation method under a condition on the error function. 

Keywords—Asymptotics, Cross-validation. Generalization error. Jackknife estimator, Kullback-Lcibler measure 
Model selection. 

1. INTRODUCTION 

Due to the flexibility and capability of neural network 
in modeling the underlying nonlinear functional rela- 
tion or decision (Barron & Barron, 1988; Hinton, 1989; 
White, 1989; Homik, Stinchcombe, & White, 1989), 
it is popular to use it in data analysis and AI research. 
One usually starts with a probability description of the 
process, and then parametrizes the probability model 
by a neural net function and at the same time introduces 
a prior distribution on the weight of the neural net and 
other parameters in the probability model. We shall re- 
fer to the term model in a general sense as the param- 
etrized probability model including prior probability. 

Various forms of error functions can be used to es- 
timate the parameter in a model. However, it is more 
important to select the right model with small gener- 
alization error based on the training data set. Model 
selection is the topic of this article. In Section 2, we 
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introduce the definition of the generalization error and 
use the method of cross-validation (Stone, 1974) to 
estimate it. This estimate is unbiased and is used as the 
model selection criterion. In Section 3, an asymptotic 
form of the jackknife estimator (Miller, 1974) is pro- 
vided to reduce the computational costs incurred in the 
cross-validation method. In Section 4, the asymptotic 
form of the model selection criterion is given. In Sec- 
tion 5, the asymptotic model selection criterion is pro- 
vided for the case when the error function is the pe- 
nalized negative log-likelihood function; Akaike's 
Information Criterion (AIC) (Akaike, 1973) and Moo- 
dy's extension (Moody, 1992) in the regression case 
are also discussed. It also shows that the asymptotic 
equivalence between Moody's model selection crite- 
rion and the method of cross-validation when the dis- 
tance between the response y and the regression func- 
tion is measured by the square of their difference. 

2. GENERALIZATION ERROR AND  ITS 
UNBIASED ESTIMATE 

There has been a substantial amount of work in the 
problem of model selection (Lindley. 1968; Mallows, 
1973; Akaike, 1973; Stone. 1974; Atkinson, 1978; 
Schwartz. 1978; Craven & Wahba. 1979; Zellner, 
1984; MacKay, 1991; Moody. 1992). One way to as- 
sess the goodness of a model is through the Kullback- 
Lcibler measure (Kullback & Leiblcr. 1951). Denote 
the underlying conditional probability distribution as 

-'/j 
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Abstract 

In this paper we address the question of how interactions affect the formation and orga- 

nization of receptive fields in a network composed of interacting neurons with Hebbian type 

learning. We show how to partially decouple single cell effects from network effects, and how 

some phenomenological models can be seen as approximations to these learning networks. We 

show that the interaction affects the structure of receptive fields. We also demonstrate how the 

organization of different receptive fields across the cortex is influenced by the interaction term, 

and that the type of singularities depends on the symmetries of the receptive fields. 
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1     Introduction 

Receptive fields in the visual cortex of cats are dramatically influenced by the visual envi- 
ronment (For a comprehensive review see, Fregnac and Imbert, 1984) . In normally reared 
animals, the population of sharply tuned neurons increases monotonically, whereas for dark 
reared animals it initially increases, but then almost disappears (See, for example, Imbert 
and Buisseret, 1975). Ocular dominance is dramatically influenced by such manipulations 
as monocular deprivation (Wiesel and Hubel, 1963) or reverse suture (Blakemore and Van- 
Sluyters, 1974; Mioche and Singer, 1989). 

These striking variations are generally believed to be the result of experience dependent 
synaptic modification. 

Now there is also evidence that LTP (long thought to be a possible physiological sub- 
strate of memory) and LTD occur in a similar fashion in hippocampus and many areas of 
mammalian cortex (Kirkwood et al., 1993). It seems quite possible therefore, that LTP and 
LTD are manifestations of the same phenomena of synaptic change as those assumed to be 
taking place in visual cortex and that all of these involve similar modifications of synaptic 
efficacy: the physiological basis of learning and memory. 

Many different synaptic modification rules have been proposed over the years - both to 
explain how cortical receptive fields evolve and to account for learning and memory storage 
in general (for example von der Malsburg 1973, Nass and Cooper 1975,Peres et. al. 1975, 
Bienenstock et. al. 1982 ,Linsker 1986, Miller 1994a). 

In this paper we begin an attempt to distinguish between these rules - to explore to what 
extent they lead to results in agreement or disagreement with experiment. Although it has 
been stated that the precise form of the learning rule is not important - that any stabilized 
Hebbian modification rule leads to more or less the same conclusions - our results show that 
this is not correct. Furthermore, these statements are misleading; the details of the learning 


